IMPACT OF LINKAGE ERRORS ON EPIDEMIOLOGICAL ANALYSES

Big Data Bahia 2018

Elizabeth Williamson

London School of Hygiene & Tropical Medicine, UK

Overview

- Evaluating and dealing with the impact of linkage errors has been identified as a priority for researchers in this area (e.g. Jorm, 2015)
- Impact of errors
- Ways to account for linkage error

Impact of linkage errors

Will depend on

- The analysis of interest
- The structure of the data and role of the linkage
- The extent and type of linkage errors

Analysis

- Focus on simple epidemiological analysis
- Prevalence or incidence of an event (e.g. mortality, cancer diagnosis)
- Comparison of events between groups

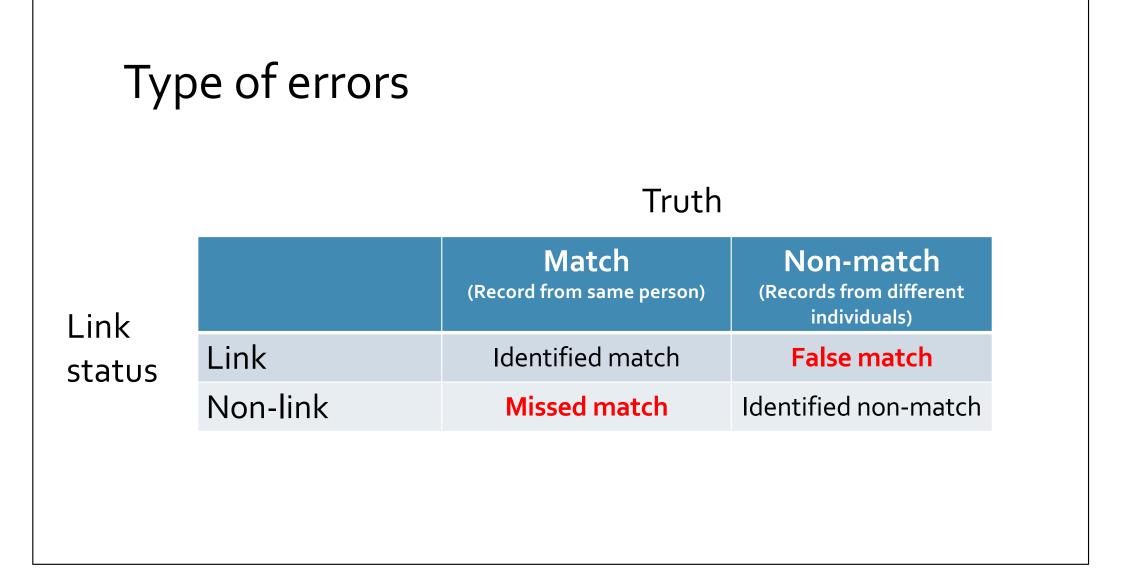
Purpose of linkage

- Adding outcome information
 - E.g. linking to mortality data to determine vital status
 - Linked = event
 - Unlinked = no event
- Defining study population
 - E.g. cohort participants diagnosed with cancer, by linking to cancer registry
 - Linked = included in analysis
 - Unlinked = excluded
- Adding covariate information
 - E.g. detailed measures of socioeconomic status, by linking to social care data
 - Linked = extra data
 - Unlinked = missing data (potentially excluded)

Misclassification

Selection bias

Missing data



IMPACT

OF LINKAGE ERRORS

Linking to event data: Estimating prevalence or incidence

- Missed matches
 - Underestimate prevalence / incidence
- False matches
 - Overestimate prevalence / incidence
 - Overestimation is inversely related to true prevalence (Brenner, 1997)
 - bigger errors for when prevalence is small
 - rare conditions are worse affected by false matches

Linking to event data: Comparing groups

Standard misclassification scenario:

- Non-differential
 - Linkage errors same in groups being compared
 - Same proportion of false matches and missed matches across groups
 - Moves estimates towards null, i.e. dilutes estimates of effect
 - Estimates generally fairly robust to non-differential missed matches
- Differential
 - Linkage errors different in groups being compared
 - Can cause bias in either direction

Example 1: Mortality by ethnicity in US

Background:

- Hispanics have been found to have better mortality than non-Hispanic whites in the US
- This is at odds with the expected effect of socioeconomic status
- Linkage is likely to be worse for Hispanic people
- Nationally representative cohort (National Health Interview Survey) in the US
- Linked to national cause of death data (National Death Index)
- Probabilistic linkage:
 - Split into classes (which characteristics match)
 - Thresholds of match scores within classes determine links

Reference Lariscy JT. *J Aging Health*, 2011

Example 1: Mortality by ethnicity in US

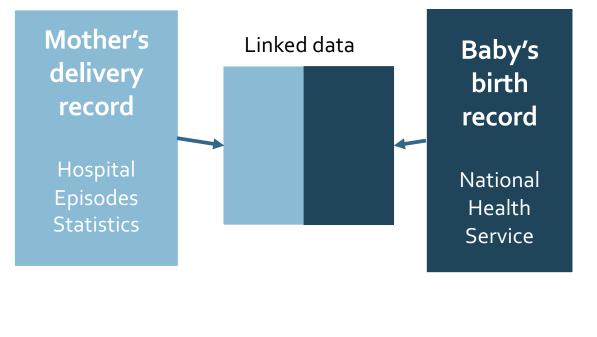
HAZARD RATIOS FOR MORTALITY	Relaxed	Usual thresholds	Tighter
US born, non-Hispanic white	Ref	Ref	Ref
Foreign born, non-Hispanic white	0.81	0.78	0.77
US born, Hispanic	1.14	1.10	1.06
Foreign born, Hispanic	1.24	0.97	0.78
more deaths more false matches fewer missed matches Reference Lariscy JT. <i>J Aging Health</i>. 2011			fewer deaths fewer false matches more missed matches

ΣUTT ľ

Linking to define study population

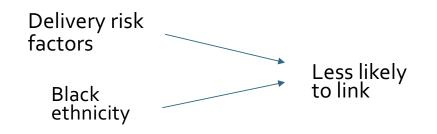
- Linkage defines who is included/excluded
 - E.g. Analyse only linked records
- Missed matches
 - Lower sample size
 - Potential selection bias
- False matches
 - Inclusion of irrelevant people / units of analysis
 - Noise, dilution of effects
 - Potential bias

- Mother-baby cohort
- 42% of baby records linked using deterministic linkage
- 98% linked using probabilistic linkage
- Also had subset of "gold-standard" linkage



- 100% 1.0% 72520 72297 71497 70465 67793 0.9% 90% 65020 0.8% 80% 0.7% 70% % missed matches % false matches 0.6% 60% 15346 0.5% 50% 0.4% 40% 30% 0.3% 0.2% 20% 0.1% 10% 0.0% 0% WERS N=35 reterministic % false matches N linked
- Power issues
- Loss of sample size

- Association between:
 - Black ethnicity (exposure) and
 - Having risk factors for delivery (outcome)
- If both these factors affect the probability of being linked
 ...i.e. affect the probability of being included in the analysis
 ...then selection bias can occur



- Gold standard:
 - 6.5% of mothers with delivery risk factors are black
- Deterministic:
 - 4.7% of mothers with delivery risk factors are black

	Gold standard	Probabilistic	Tighter	Deterministic
Pre-term birth (%)	7.65%	7.64%	7.31%	7.43%
Black vs white ethnicity:				
OR (delivery risk factors)	0.98	0.97	0.89	0.80
95% CI	(0.88, 1.09)	(0.87, 1.08)	(0.79, 1.01)	(0.66, 0.96)

METHODS TO HANDLE

LINKAGE ERRORS

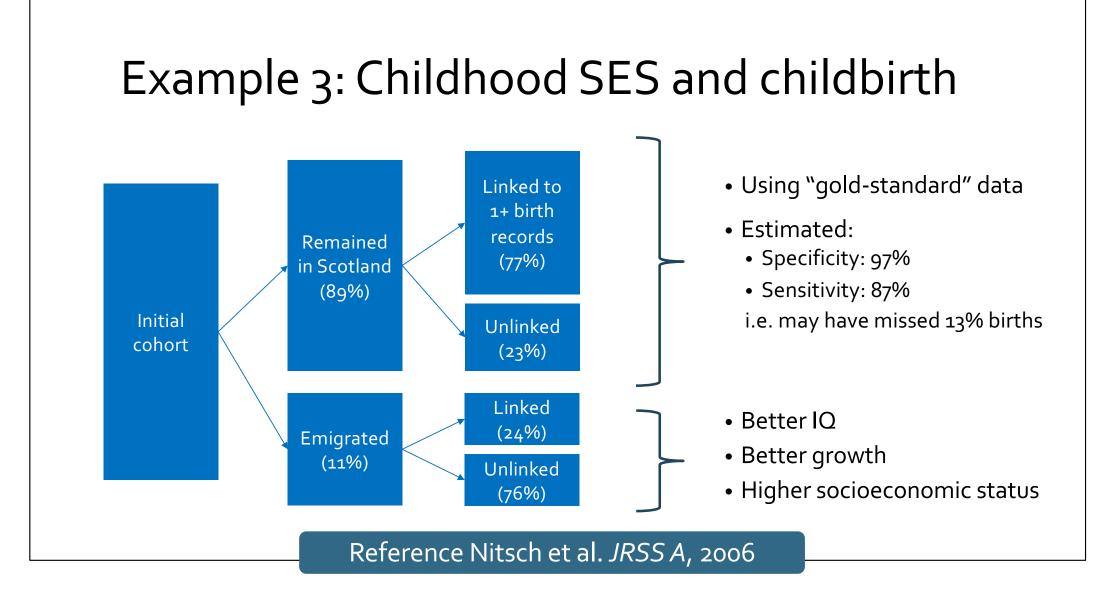
Approaches to handling linkage errors

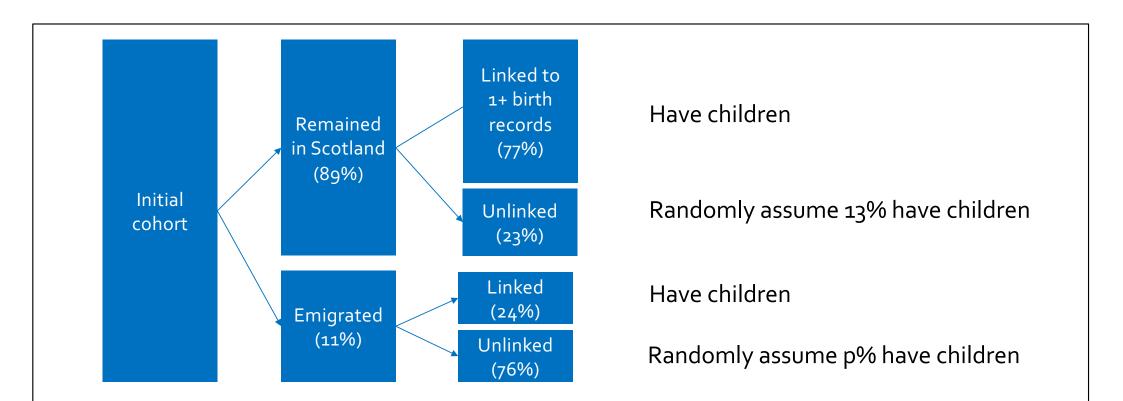
- Ignore the linkage error
- Quantify the bias (sensitivity analysis)
 - E.g. changing linkage thresholds
 - E.g. exploring mechanisms of linkage error
- Correcting for the bias and incorporating linkage uncertainty
 - Treat as missing data problem

Example 3: Childhood SES and childbirth

- Aim: To assess the effect of childhood socio-economic (SES) status on likelihood of having children
- Children of the 1950's cohort sub-study
 - 4997 women in Aberdeen (Scotland) with perinatal and childhood data
- Linked to:
 - Scottish Maternity Record (incomplete until 1976)
 - AMND (Aberdeen only)

Reference: Nitsch et al. JRSS A, 2006

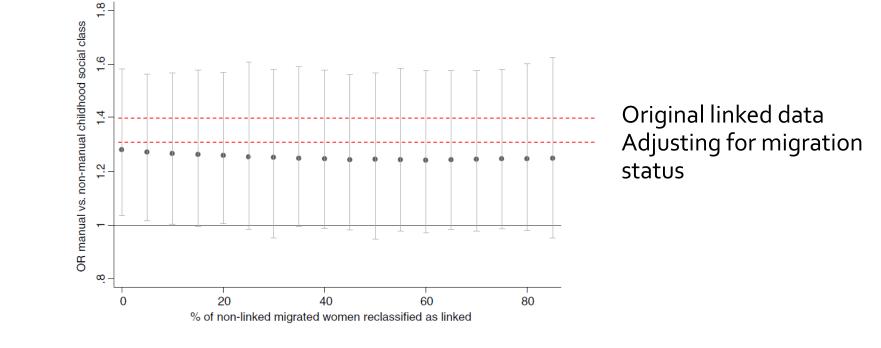




- For each scenario, simulated 1000 datasets (with re-assignment)
- Calculated estimated OR for socioeconomic status (manual vs non-manual)
- Estimated 95% CI was minimum bound maximum bound over 1000 datasets.

Reference: Nitsch et al. JRSS A, 2006

Example 3: Childhood SES and childbirth



• Estimated effect of childhood SES on childbirth was robust to misclassified status of migrants

Reference: Nitsch et al. JRSS A, 2006

Carrying through uncertainty

- Various methods proposed by Goldstein et al and colleagues
- Essentially, rephrase aim
 - Not to link data
 - But to add information about particular variables of interest to analysis dataset
- Recasts the problem as a missing data problem

Sex	Age	Height	Dead
М	35	1.66	?
F	82	1.43	?
F	79	1.62	?
Μ	56	1.82	?

Carrying through uncertainty

• E.g. Suppose we are linking a cohort data to mortality records (so link = dead)

Sex	Age	Height	Dead		
М	35	1.66	1		Certain links
F	82	1.43	?	٦	Lincortain links
F	79	1.62	?		Uncertain links
М	56	1.82	0		Certain non-links

- Apply multiple imputation
- Can incorporate:
 - Outcomes in potential links (where multiple)
 - Match probabilities / weights

CONCLUSIONS

Conclusions

- Impact of linkage errors depends on structure of data, the role of the linkage, the analysis, and the extent and type of errors
- Substantial bias can occur, particularly for comparisons involving groups with particularly poor linkage
- Methods to handle linkage error include:
 - Sensitivity analysis
 - Imputation-based approaches

References

- Jorm L. Routinely collected data as a strategic resource for research: priorities for methods and workforce. Public Health Res Pract, 2015:25;e2451540.
- Brenner H, Schmidtmann I, Stegmaier C. Effects of record linkage errors on registry-based follow-up studies. Stats in Med, 1997, 16:2633-2643.
- O'Reilly D, Rosato M, Connolly S. Unlinked vital events in census-based longitudinal studies can bias subsequent analysis. *J Clin Epi*, 2008, 61(4):380-385.
- Lariscy JT, Differential record linkage by Hispanic ethnicity and age in linked mortality studies. J Aging Health, 2011, 23(8):1263-1284.
- Harron K, Doidge J, et al. A guide to evaluating linkage quality for the analysis of linked data, Int J Epi, 2017, 1699-1710.
- Nitsch D, deStavola B, et al. Linkage bias in estimating the association between childhood exposures and propensity to become a mother: an example of simple sensitivity analysis. JRSS A, 2006, 169(3):493-505.
- Goldstein H, Harron K, Wade A. The analysis of record linked data using multiple imputation with data value priors. Stat in Med, 2012.